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Lag-modeling approach for dissipation terms in
large eddy simulation

By S. G. Chumakov, J. Larsson, C. Schmitt AND H. Pitsch

1. Motivation and objective

In Large Eddy Simulation (LES), only the large energy-containing scales of motions
are computed directly, while the effect of the small scales is accounted for via the subgrid-
scale (SGS) models. The governing equations for LES are obtained by formally applying
the filtering procedure φ̄ = G ∗ φ to the Navier-Stokes equations:

ūi,i = 0 (1.1)
ūi,t + (ūiūj),j = −P̄,i + νūi,jj − τij,j . (1.2)

Here ∗ denotes convolution, τij = uiuj − ūiūj is the SGS stress tensor, G is the filter
function that satisfies ‖G‖1 = 1, G ≥ 0, ν is the kinematic viscosity, and P = p/ρ
is the modified pressure. The following notations are used to designate the derivatives:
a,i = ∂a/∂xi, a,ij = ∂2a/∂xi∂xj , and a,t = ∂a/∂t.

Applying similar averaging to the transport equation for a passive scalar φ yields

φ̄,t + (ūiφ̄),i = Dφ̄,ii − hi,i. (1.3)

Here hi = uiφ − ūiφ̄ is the SGS scalar flux. Both τij and hi are not available from the
resolved (LES) flow field and thus have to be modeled.

A very promising approach to modeling τij and hi consists of utilization of extra
LES quantities such as SGS kinetic energy (Schumann 1975; Ghosal et al. 1995) and
SGS scalar variance (Jiménez et al. 2001; Chumakov & Rutland 2004, 2005). For these
quantities, transport equations can be rigorously derived:

ks,t + (ūiks),i = −(uiP,i − ūiP̄,i)− (τiij/2− ūiτij),j + ν ks,jj − τijS̄ij − εs (1.4)

θ,t + (ūiθ),i = −(uiφ2 − ūiφ2),i + 2φ̄ hi,i +D θ,ii − χs. (1.5)

Here ks = τii/2 is the SGS energy, τiij = uiuiuj−uiuiūj is the triple-correlation term, and
S̄ij = (ūi,j+ ūj,i)/2 is the resolved strain-rate tensor. In the second equation, θ = φ2− φ̄2

is the SGS scalar variance.
The customary treatment of the equations (1.4) and (1.5) consists of modeling the

triple-correlation terms with turbulent viscosity νT or turbulent diffusivity DT . The
second term on the right-hand side of (1.5) is recast as 2φ̄hi,i = (2φ̄hi),i − 2hiφ̄,i and
the first part of it, together with the triple correlation term is modeled via turbulent
diffusivity DT . This simplifies the equations for ks and θ to the following:

ks,t + (ūiks),i = (ν + νT ) ks,jj −τijS̄ij︸ ︷︷ ︸
Π

−εs (1.6)

θ,t + (ūiθ),i = (D +DT ) θ,ii−2hiφ̄,i︸ ︷︷ ︸
Λ

−χs, (1.7)
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where Π and Λ are the source terms for ks and θ, correspondingly.
The simplified equations have new unclosed terms:

εs = ν (ui,jui,j − ūi,j ūi,j) (1.8)

the SGS energy dissipation rate, and the dissipation rate of the SGS scalar variance

χs = 2D
(
φ,iφ,i − φ̄,iφ̄,i

)
. (1.9)

Both of these terms have to be modeled. The latter term, χs, also plays an important
role in combustion modeling, e.g., in the flamelet models for non-premixed combustion
(for review, see Pitsch 2006).

In the current literature, few models can be found for εs and χs. For εs, the standard
model is (Schumann 1975; Yoshizawa & Horiuti 1985)

εs ≈ 1.0
k

3/2
s

∆
, (1.10)

where ∆ is the characteristic length scale of the LES filter (usually ∆ is set to the LES grid
cell size). This model has been found to over-predict the actual dissipation rate in a priori
tests by Chumakov (2007). Therefore application of this model in conjunction with the
eddy-viscosity models for τij results in stable calculations owing to forward-only energy
transfer between resolved and subgrid scales and local equilibrium assumption applied
to the subgrid scales.

Modeling of χs, along with modeling for θ, has been an active research area due to
demand from the combustion community. Pierce & Moin (1998) applied the dynamic
procedure to modeling θ and χs as θ ≈ C∆2φ̄,iφ̄,i and χs = (D + DT )φ̄,iφ̄,i. Cook &
Bushe (1999) proposed to use the assumed scalar spectrum to compute the coefficient C
in the model for χs. Recent advances include application of the concept of optimal esti-
mators (Balarac et al. 2008a,b) to model both terms. Also, various numerical issues that
complicate the modeling of θ have been considered in Kaul et al. (2009). In particular,
under some circumstances it was found to be preferable to use the transport equation
for φ2 in place of the transport equation for θ. Although we do not investigate the effect
of numerical implementation here, these ideas can be applied in further development of
the concepts presented in this work. In general, one should always take into account the
numerical errors that can be of considerable magnitude in LES (Ghosal 1999). A further
comprehensive review of closures for θ and χs can be found in Pitsch (2006).

All models mentioned above relate the dissipation terms to other (known) quantities at
the same instant in time and, as a rule, imply that the subgrid flow is in local equilibrium,
i.e., production and dissipation of SGS energy (or SGS scalar variance) are equal. The
latter assumption is clearly violated in some important cases (Pitsch 2006), whereas the
former can be generalized as follows: we can relate the dissipation at time t0 to other
quantities over a time interval (t0−T, t0) instead of a single snapshot of the flow at t = t0.
For example, one phenomenological picture could be that there is a time-lag between the
transfer of energy into the subgrid scales and the dissipation into heat of an imagined
energy packet. In the present work we construct models that introduce a time-lag into
the process, and investigate whether this leads to better predictions.

In summary, the dissipation field χs at the moment t = t0 might not be correlated
with the resolved field at t = t0, but there is a possibility of correlation between χs and
the resolved field at the time t = t0 − T , where T is some characteristic lag time. A
simple idea inspired in part by Lagrangian approach to the modeling of τij (Meneveau
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et al. 1996) is to model the dissipation terms as the production terms, lagged along the
Lagrangian trajectories. To evaluate the feasibility of this approach is the main objective
of this work.

2. Formulation of the modeling approach

2.1. A priori verification of modeling assumption

Before we start model derivation, we should determine if the main assumption, i.e., that
the dissipation is lagging behind the production along a Lagrangian trajectory, is valid.
For this we use direct numerical simulation (DNS) of forced isotropic turbulence with
LES Lagrangian particles.

An open-source, pseudo-spectral code hit3d†, developed by one of the authors, has
been used for the a priori testing of the modeling assumptions. The main purpose of the
code is to perform large-scale DNS of incompressible homogeneous isotropic turbulence
with an arbitrary number of passive scalars in a massively parallel environment. Also, the
code is capable of transporting Lagrangian particles that are advected by locally averaged
flow field to mimic the particles carried by ”ideal” LES. The characteristic length ∆ of
the LES filter can be varied and various quantities can be computed along the particle
trajectories.

For the purposes of this work, we ran a DNS of forced isotropic turbulence with
Reλ = 230. The size of the computational domain was 5123 grid points. The LES filter
length ∆ was set to 0.2 and 0.4, which falls into the (although limited) inertial range of
the simulation. We measured Π, Λ, εs, and χs along the LES particle trajectories and
computed the cross-correlation between Π(t) and εs(t+T ). The resulting correlation was
averaged over 100,000 particle trajectories and is presented in the Fig. 1. It is evident
from the figure that there is a noticeable lag between the production and dissipation of
SGS energy, and the lag time equals roughly one eddy turnover time at the cutoff scale.
The eddy turnover time is calculated as 1/|S̄|. Similar results have been obtained for Λ
and χs (not shown).

Thus our a priori test shows that there is indeed lag between production and dissipa-
tion. Now we can build our model on this assumption.

2.2. Model derivation

The cornerstone of our approach is the concept of cascade time scale, which we will
illustrate using the SGS energy dissipation rate εs as an example. Model derivation for
χs is identical.

We surmise that once energy (or scalar variance) is injected in a ball of fluid of radius ∆,
where ∆ is in the inertial range of scales, it is carried by the eddies with the characteristic
size of the order of ∆. Then the eddy breakdown process carries this energy into smaller
and smaller scales until it reaches dissipative scales of motion and dissipates. The duration
of this process is characterized by the cascade timescale. We assume that the ball retains
its shape during this time. This process results in the lag between production of the SGS
energy at the scales similar to ∆, the LES filter size, and its dissipation at the scales of
the order of η, the Kolmogorov length scale.

Thus the dissipation rate εs can be found as an integral of the production rate Π =
−τijS̄ij along the LES Lagrangian trajectory with a particular weight function that has

† The code is freely available from hit3d.googlecode.com
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Figure 1. The cross-correlation between pro-
duction Π and dissipation εs of the SGS en-
ergy ks along LES Lagrangian trajectories with
∆ = 0.2 ( ) and ∆ = 0.4 ( ).
The time shift T is normalized by the eddy
timescale 1/S̄.
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Figure 2. Weight functions W0 ( ) and
W1 ( ).

the peak at some characteristic time T . We introduce the weight functions W0(x) and
W1(x) defined as follows (see Figure 2):

W0(x) = exp(−x/T ), W1(x) =
x

T
exp(−x/T ). (2.1)

These functions possess the following property:

∂

∂t
W1(t− t′) =

1
T

[W0(t− t′)−W1(t− t′)] . (2.2)

Thus we can rewrite εs as the Lagrangian average of Π with the weight W1. We
introduce an auxiliary quantity B as the similar average of Π but with the weight function
W0 as follows:

(BT )(t, x(t)) =
∫ t

−∞
Π(t′, x(t′))W0(t− t′) dt′, (2.3)

(εsT )(t, x(t)) =
∫ t

−∞
Π(t′, x(t′))W1(t− t′) dt′. (2.4)

Taking derivatives of both sides in the equations (2.3) and (2.4) and using the property
(2.2), we arrive at the following ODE system:{

˙(BT ) = Π−B
˙(εsT ) = B − εs

, (2.5)

where the derivatives are taken along the Lagrangian path. Note that the system con-
serves the energy, i.e., the long-term averages of Π and εs along the Lagrangian path are
equal.

The system (2.5) has been tested a priori with two kinds of parameter function Π:
synthetic (Gaussian random) and Π taken from a DNS, and was found to have several
potential problems. Namely, (i) in this particular formulation of the system nothing
prevents εs from going negative which is unphysical, and (ii) the system does not take
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into account the turbulent diffusion of the SGS energy. The point (i) can be taken care
of by introducing separate timescales for B and εs.{

˙(BTB) = Π−B
˙(εsTε) = B − εs

, (2.6)

The timescales are further defined as TB = 1/|S̄|, Tε = CT∆2/3ε
−1/3
s . The latter prevents

εs from going negative. We assume that these timescales are close in the situation of fully
developed turbulent flow, i.e., when both ks and εs are nonzero. The phase portraits of
the system (2.6) in the (B, εs)-plane are given in the Figures 3, 4 and 5. The system has
a fixed point at (Π,Π) for all values of Π, but the trajectories always stay in the upper
half-plane, εs ≥ 0, independent of Π, if the initial conditions satisfy εs ≥ 0. Also for
constant zero Π the dissipation rate converges to zero.

To rectify the point (ii) mentioned above, we need to replace the left-hand side of (2.6)
with material derivative and add the turbulent diffusion to the right-hand side of the
system. This changes the system (2.6) as follows:{

(BTB),t + (ūiBTB),i = (ν + νT )(BTB),ii + Π−B
(εsTε),t + (ūiεsTε),i = (ν + νT )(εsTε),ii +B − εs

. (2.7)

The system (2.7) still has the conservation property, i.e., the net production equals net
dissipation over long time periods. Moreover, with this model for εs, the transport equa-
tion for ks (1.6), becomes redundant, because it is equivalent to the sum of the equations
that comprise the system (2.7); thus, ks = (BTB) + (εsTε).

Alternatively, one could view the equation for (BTB) as redundant and solve for ks
and εsTε with B = (ks− εsTε)/TB . Thus one would obtain a two-equation model similar
to the classical k-ε model. The differences compared with the classical model are (i)
the lag-model solves for εsTε rather than εs, and (ii) the source terms in the lag-model
stem directly from the basic assumption of the form of the Lagrangian lag. This model
formulation will be explored in the immediate future.

Equivalent analysis can be performed for the modeling of χs. For this case, the resulting
system of equations is{

(FTF ),t + (ūiFTF ),i = (D +DT )(FTF ),ii + Λ− F
(χsTχ),t + (ūiχsTχ),i = (D +DT )(χsTχ),ii + F − χs

(2.8)

Analogously, this system makes the equation (1.7) redundant because θ = (FTF ) +
(χsTχ).

3. A posteriori tests and results

3.1. The Sydney bluff body flame
The SMH1-flame from a series of bluff body/swirl-stabilized flame experiments is used
to analyze the effect of the lag-model for the SGS dissipation rate χs of the variance of
a passive scalar in a turbulent reactive flame simulation. Subgrid scalar dissipation rate
appears here naturally in the transport equation for θ, the SGS variance of the mixture
fraction Z.

The burner configuration of this well-characterized flame consists of a central fuel
nozzle of 3.6 mm diameter that is surrounded by a bluff body with Dref = 50 mm
diameter. Swirling air at an axial bulk velocity of Us = 42.8 m/s is supplied through
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Figure 3. Phase portrait of the system (2.6)
for the case Π = 1.
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Figure 4. Phase portrait of the system (2.6)
for the case Π = 0.
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Figure 5. Phase portrait of the system (2.6)
for the case Π = −1.

an annulus of 10 mm width. The burner is surrounded by a co-flowing air stream with
an axial velocity of Ue = 20 m/s. The fuel consists of a methane/hydrogen mixture in
a volumetric ratio of 1:1. The bulk exit velocity of the fuel stream is Uj = 140.8 m/s.
The geometric swirl number for this configuration is Sg = 0.32. The turbulent flow field
of this flame series was measured by Kalt et al. (2002); Al-Abdeli & Masri (2003); Masri
et al. (2004), species measurements were performed by Kalt et al. (2002); Masri et al.
(2004), and all experimental results are available online from Masri (2006).

The Favre-filtered transport equations for mass, momentum, mixture fraction, and
residual mixture fraction variance are solved in cylindrical coordinates using the NGA
code developed at CTR (for code reference see Desjardins et al. 2008). The computational
domain is 5Drefx 3Drefx2π in axial, radial, and circumferential directions, respectively.
The radial direction is discretized by 230 unevenly spaced grid points concentrated in the
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Figure 6. Instantaneous plot of the temperature field for the SMH1 flame. Temperature
ranges from 300K (white) to 2100K (black).

shear layer region surrounding the fuel jet and swirling annulus. The grid in axial direction
uses 216 points and is stretched in downstream direction whereas the circumferential
direction is equally spaced and uses 64 points. The turbulent inflow profiles for the fuel
nozzle and annulus are computed from a separate pipe flow simulation by enforcing the
bulk axial and azimuthal velocity reported in the experiment.

The GRI 2.11 mechanism (Bowman et al. 1997) is used for the description of chemistry
and a mapping of all relevant quantities onto the mean of mixture fraction, its variance,
and scalar dissipation rate is used following the flamelet-based modeling approach pro-
posed by Peters (1983, 1984). Due to the swirling co-flow in this configuration, the flame
burns very stably and does not show strong extinction or re-ignition. There is, however,
expected to be a rather strong effect of heat transfer to the bluff body, which at this
point is not taken into consideration when modeling chemistry.

Figure 6 shows a snapshot of the instantaneous temperature field, which clearly shows
that the flame is almost attached to the edge of the bluff body. The surrounding swirling
air leads to a contraction of the flame with its neck located roughly one bluff body
diameter downstream. The neck region is expected to have high dissipation rates due to
presence of high gradients of both velocity and scalars, and the effect of the model for
χs is expected to be most prominent near that region.

The values of χs and χ̄ — the SGS dissipation of θ and the full scalar dissipation which
is processed by the combustion model, — are presented in Figure 7. Same values, but
conditioned on the resolved mixture fraction Z̃, are plotted in Figure 8. The statistical
results for temperature and mass fraction of CO2 for the two simulations are reported in
Figure 9 with comparison to experimental data.

As mentioned above, it is not surprising to find a clear discrepancy between simulations
and experiment close to the bluff body. At the first station the heat transfer to the bluff
body seems to have a large effect, but it is not taken into account in the simulation setup.
At the last two stations the statistics are strongly affected by how well the swirling co-
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Figure 7. Statistics of the mean of the SGS scalar dissipation χs and full scalar dissipation χ̄
recovered from the simulation, at four downstream locations, x/Dref = 0.2, 0.8, 1.6, 2.5 (from
top to bottom). The simulation based on a standard dynamic procedure to evaluate the subgrid
scalar dissipation rate is shown by the dashed line, and the simulation based on the lag-model
corresponds to the solid line.

flow is captured, and therefore are not suited for detailed study of lagged versus standard
models of the scalar dissipation.

It is evident from the Figures that near the neck region of the flame (at the second
measuring station) the time-averaged values of both χs and χ̄ do not change dramatically
(Figure 7). However, there is a difference between the conditioned values (Figure 8).
The peaks at the right end of the graphs of 〈χs|Z̃〉 and 〈χ̄|Z̃〉, which are absent in the
simulation with the dynamic model, may indicate the further penetration of the fuel
jet inside the domain in the simulation with the lag-model. For lower values of Z̃, the
difference between the predictions of the dynamic and lag-model is also apparent. The
effect of the lag-model on the resolved statistics is shown in the Figure 9. Here, a clear
difference in prediction of the temperature and, consequently, reaction products, can be
seen at the second measuring station. The simulation with lag-model gives predictions
of Favre-averaged temperature T̃ and the mass fraction of CO2 that are closer to the
ones measured experimentally. As a result of changing only one variable in the whole
simulation, we consider this an improvement.

4. Summary and future work

A new approach to modeling the dissipation of subgrid-scale energy and subgrid-scale
scalar variance in the framework of Large Eddy Simulation is introduced. The approach
is based on the idea of incorporating an explicit delay (or lag) between the production
and dissipation terms in the transport equations for the SGS energy and SGS scalar
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Figure 8. Mean values of χs and θ conditioned on the mixture fraction, at four downstream
locations, x/Dref = 0.2, 0.8, 1.6, 2.5 (from top to bottom).

variance. We expect the lag effect to be important in applications with high sensitivity
to the dissipation terms, such as non-premixed combustion. Also, this approach might
prove beneficial for applications where the flow timescales are significantly faster than
the turbulence timescales, such as scramjet combustion.

The immediate future work includes a posteriori testing of the lag-models in more
idealized environment where the model effects can be clearly isolated. Such tests would
not only provide a better assessment of whether the lag-modeling approach has inherent
advantages over existing approaches, but also would (hopefully) identify specifically in
what situations the lag itself is important.

Although the lag-modeling approach to the dissipation terms appears to improve the
results for the regions of high sensitivity to the dissipation terms, we must empathize that
the overall quality of the lag-model is highly dependent on the quality of the source terms
in the lag-equations, Π and Λ. These terms, in turn, directly depend on the quality of the
models for τij and hi. This brings attention to the structural models for these quantities,
as opposed to the functional models (as classified by Sagaut 2006). The former try to
predict the actual configuration of τij and hi, which appears crucial for good prediction
of the local energy transfer and variance source, which in turn affects the performance
of the lag-models.
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